**Prof. Dennis Giannacopoulos**

McGill University

Department of Electrical and Computer Engineering

3480 University

Montreal, QC, Canada H3A 0E9

**Tel:** 514-398-7128

**Email:** dennis.giannacopoulos@mcgill.ca

High performance computing methods for large-scale software systems

Computer simulation technologies for microelectronic systems performance

Application of parallel and distributed simulation methods to the development of microelectronic CAD tools

- Ph.D.
- A. Akbari, 2016 - present, Parallel Iterative Multiphysics Finite Element Methods
- A. Nikjoo, 2016 - present, Optimized Software Architectures for Parallel Finite Element Methods
- D. Abraham, 2015 - present, Nonlinear Dispersive Finite Element Time Domain Methods
- F. Afshar, 2012 - 2017, Finite Element Analysis for Graphene Composite Materials
- A. Sharbaf, 2011 - 2016, Hybrid Finite Element Time Domain Methods for Electromagnetics
- Y. El-Kurdi, 2009 - 2014, Novel Fast Iterative Parallel Finite Element Electromagnetic Methods
- M. Mehri-Dehnavi, 2008 - 2012, Acceleration of Computational Electromagnetics Algorithms
- D. Fernández-Becerra, 2006 - 2011, Multicore Acceleration of Sparse Electromagnetics Computations
- H. K. Fung, 2004 - 2006, Finite Element Modeling for Metamaterials
- M. Dorica, 2004 - 2007, Novel Electromagnetic Design System Enhancements using Computational Intelligence
- D. Q. Ren, 2002 - 2007, Parallel 3-D Mesh Refinement Algorithms for Finite Element Electromagnetics with Tetrahedra
- Y. F. Wong, 2002 – 2004, Adaptive Parallel Finite Element Analysis for Interconnects
- Masters
- S. Zaman, 2003 - 2006, Optimization of Electromagnetic Devices Using Genetic Algorithms
- C. Park, 2003 - 2006, Performance Simulation for Distributed Tetrahedral Mesh Generation
- H. Zhang, 2001 - 2004, Simulation of Communications Networks for Parallel Computing
- A. K. Sihota, 2002 - 2004, Efficient Parallel Iterative Solvers for Sparse Linear Systems
- H. Z. Qureshi,2001 - 2003,High Performance Computing Methods for Sparse Linear Systems
- Z. Hosseini-Doust2,2010 - 2013, Parallel Gaussian Belief Propagation Algorithms on GPUs
- X. Wang, 2006 - 2008, Parallel Conformal Finite Element Tetrahedral Mesh Refinement
- Y. Zhao, 2005 - 2007, Implementation of Conjugate Gradient Algorithms using Striping Techniques
- Y. Elkurdi, 2004 - 2006, Hardware Acceleration for Computational Electromagnetics
- F. Abutalib, 2004 - 2007, Tetrahedral Mesh Generation from MRI Medical Data for Finite Element Electromagnetic Analysis
- M. Dorica, 2003 - 2004, Tetrahedral Mesh Improvement for Adaptive Finite Element Electromagnetic Analysis
- Y. Liu, 2003 - 2005, Microelectronic Interconnection Electromagnetic Simulation
- C. Rizk, 2003 - 2005, Hybrid Modeling Methods in Computational Electromagnetics
- B. Mirican, 2003 - 2006, Parallel and Distributed Tetrahedral Mesh Generation and Refinement

[50] D. S. Abraham and D. D. Giannacopoulos (2017). A Parallel Implementation of the Correction Function Method for Poisson’s Equation with Immersed Surface Charges. IEEE Transactions on Magnetics, 53(6):1-4. DOI: 10.1109/TMAG.2017.2659702.

[49] D. Fernández, A. Akbarzadeh-Sharbaf and D. Giannacopoulos. (2017). Solving Finite-Element Time-Domain Problems with GaBP. IEEE Transactions on Magnetics, 53(6):1-4. DOI: 10.1109/TMAG.2017.2657555.

[48] F. Afshar, A. Akbarzadeh-Sharbaf and D. Giannacopoulos. (2016). A Provably Stable and Simple FDTD Formulation for Electromagnetic Modeling of Graphene Sheets. IEEE Transactions on Magnetics, 52(3):1-4. DOI: 10.1109/TMAG.2015.2487835.

[47] Y. El-Kurdi, D. Fernández, W. J. Gross and D. Giannacopoulos. (2016). Acceleration of the Finite Element Gaussian Belief Propagation Solver Using Minimum Residual Techniques. IEEE Transactions on Magnetics, 52(3):1-4. DOI: 10.1109/TMAG.2015.2487683.

[46] D. S. Abraham and D. D. Giannacopoulos. (2016). Dispersive Möbius Transform Finite Element Time Domain Method on Graphics Processing Units. IEEE Transactions on Magnetics, 52(3): 1-4. DOI: 10.1109/TMAG.2015.2488641.

[45] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2015). Novel Hybrid FETD–FDTD Formulations for Dispersive Media. IEEE Transactions on Magnetics, 51(3): 1-4. DOI: 10.1109/TMAG.2014.2355593.

[44] Y. El-Kurdi, M. Mehri Dehnavi, W. J. Gross and D. Giannacopoulos. (2015). Parallel finite element technique using Gaussian belief propagation. Computer Physics Communications. 193: 38-48. DOI: 10.1016/j.cpc.2015.03.019.

[43] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2015). A stable and efficient direct time integration of the vector wave equation in the finite-element time-domain method for dispersive Media.IEEE Transactions on Antennas and Propagation, 63(1): 314-321. (NSERC).

[42] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2014). On the Development of Nonoverlapping and Stable Hybrid FETD-FDTD Formulations. IEEE Transactions on Antennas and Propagation,62(12): 6299-6306. (NSERC).

[41] Y. Elkurdi, W. J. Gross, and D. Giannacopoulos. (2014). Parallel multigrid acceleration for the finite element Gaussian belief propagation algorithm. IEEE Transactions on Magnetics, 50(2): 7014304 (4 journal pages). (NSERC)

[40] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2013). Finite-element time-domain solution of the vector wave equation in doubly dispersive media using Möbius transformation technique. IEEE Transactions on Antennas and Propagation, 61(8): 4158-4166. (NSERC).

[39] M. Mehri Dehnavi, D. Fernández, J. Gaudiot and D. Giannacopoulos. (2013). Parallel Sparse Approximate Inverse Preconditioning on Graphic Processing Units. IEEE Transactions on Parallel and Distributed Computing, 24(2): 1852-1862. (NSERC)

[38] M. Mehri Dehnavi, Y. El-Kurdi, J. Demmel and D. Giannacopoulos. (2013). Communication-Avoiding Krylov Techniques on GPUs. IEEE Transactions on Magnetics, 49(5): 1749-1752. (NSERC)

[37] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2013). Implementation of a first-order ABC in mixed finite-element time-domain formulations using equivalent currents. IEEE Microwave and Wireless Component Letters, 23(6): 276-278. (NSERC)

[36] D. M. Fernández, M. Mehri Dehnavi, W. J. Gross, D. Giannacopoulos. (2012). Alternate parallel processing approach for FEM. IEEE Transactions on Magnetics, 48(2): 399-402.

[35] Y. El-Kurdi, W. J. Gross and D. Giannacopoulos. (2012). Efficient implementation of Gaussian Belief Propagation solver for large sparse diagonally dominant linear systems. IEEE Transactions on Magnetics, 48(2): 471-474.

[34] D. Q. Ren, E. Bracken, S. Polstyanko, N. Lambert, R. Suda and D. D. Giannacopoulos. (2012). Power aware parallel 3-D finite element mesh refinement performance modeling and analysis with CUDA/MPI on GPU and multi-core architecture. IEEE Transactions on Magnetics, 48(2): 335-338.

[33] M. Mehri Dehnavi, D. Fernández and D. Giannacopoulos. (2011). Enhancing the performance of conjugate gradient solvers on graphic processing units. IEEE Transactions on Magnetics, 47(5): 1162-1165.

[32] M. M. Dehnavi, D. M. Fernández and D. Giannacopoulos. (2010). Finite element sparse matrix vector multiplication on graphic processing units. IEEE Transactions on Magnetics, 46(8): 2982-2985.

[31] D. M. Fernández, D. Giannacopoulos and W. J. Gross. (2010). Multicore acceleration of CG algorithms using blocked-pipeline-matching techniques. IEEE Transactions on Magnetics, 46(8): 3057-3060.

[30] D. M. Fernández, D. Giannacopoulos and W. J. Gross. (2009). Efficient multicore sparse matrix-vector multiplication for FE electromagnetics. IEEE Transactions on Magnetics, 45(3): 1392-1395.

[29] M. M. Dehnavi and D. Giannacopoulos. (2009). Enhancing the performance of electromagnetic applications on clustered architectures. IEEE Transactions on Magnetics, 45(3): 1340-1343.

[28] Y. El-Kurdi, D. Fernández, E. Souleimanov, D. Giannacopoulos and W. J. Gross. (2008). FPGA architecture and implementation of sparse matrix-vector multiplication for the finite element method.Computer Physics Communications, 178(8): 558-570.

[27] Da Qi Ren, T. Park, B. Mirican S. McFee and D. D. Giannacopoulos. (2008). A methodology for performance modeling and simulation validation of parallel 3-D finite element mesh refinement with tetrahedra. IEEE Transactions on Magn., 44(6): 1406-1409.

[26] Da Qi Ren, S. McFee and D. D. Giannacopoulos. (2008). A new strategy for reducing communication latency in parallel 3-D finite element tetrahedral mesh refinement. IEEE Transactions on Magnetics, 44(6): 1410-1413.

[25] Y. El-Kurdi, D. Giannacopoulos and W. J. Gross. (2007). Hardware acceleration for finite element electromagnetics: efficient sparse matrix floating-point computations with FPGAs. IEEE Transactions on Magnetics, 43(4): 1525-1528.

[24] M. Dorica and D. D. Giannacopoulos. (2007). Evolution of wire antennas in three dimensions using a novel growth process. IEEE Transactions on Magnetics, 43(4): 1581-1584.

[23] M. Dorica and D. D. Giannacopoulos. (2007). Evolution of two-dimensional electromagnetic devices using a novel genome structure. IEEE Transactions on Magnetics, 43(4): 1585-1588.

[22] D. D. Giannacopoulos, Hak Keung Fung and B. Mirican. (2006). Efficient load balancing for parallel adaptive finite element electromagnetics with vector tetrahedra. IEEE Transactions on Magnetics, 42(4): 555-558.

[21] D. D. Giannacopoulos and D. Q. Ren. (2006). Analysis and design of parallel 3-D mesh refinement dynamic load balancing algorithms for finite element electromagnetics with tetrahedra. IEEE Transactions on Magnetics, 42(4): 1235-1238.

[20] D. Q. Ren and D. D. Giannacopoulos. (2006). Parallel mesh refinement for 3-D finite element electromagnetics with tetrahedra: strategies for optimizing system communication. IEEE Transactions on Magnetics, 42(4): 1251-1254.

[19] M. Dorica and D. Giannacopoulos. (2006). Response surface space mapping for electromagnetic optimization. IEEE Transactions on Magnetics, 42(4): 1123-1126.

[18] M. Dorica and D. D. Giannacopoulos. (2006). Response clustering for electromagnetic modeling and optimization. IEEE Transactions on Magnetics, 42(4): 1127-1130.

[17] M. Dorica and D. D. Giannacopoulos. (2005). Impact of mesh quality improvement systems on the accuracy of adaptive finite element electromagnetics with tetrahedra. IEEE Transactions on Magnetics, 41(5): 1692-1695.

[16] M. Popovic and D. D. Giannacopoulos. (2005). Assessment-based use of CAD tools in electromagnetic fields courses. IEEE Transactions on Magnetics, 41(5): 1824-1827.

[15] D. Giannacopoulos. (2004). Optimal discretization-based load balancing for parallel adaptive finite element electromagnetic analysis. IEEE Trans. Magn., 40(2): 977 – 980.

[14] M. Dorica and D. Giannacopoulos. (2004). Towards optimal mesh quality improvements for adaptive finite element electromagnetics with tetrahedra. IEEE Transactions on Magnetics, 40(2): 989 – 992.

[13] S. McFee, Q. Wu, M. Dorica and D. Giannacopoulos. (2004). Parallel and distributed processing for h-p adaptive finite element analysis: a comparison of simulated and empirical studies. IEEE Transactions on Magnetics, 40(2): 928 – 933.

[12] D. Giannacopoulos. (2003). Field discontinuity refinement criteria and optimal discretizations in adaptive finite element electromagnetic analysis for microelectronic system interconnections. IEEE Transactions on Magnetics, 39(3): 1658-1661.

[11] D. Giannacopoulos. (2002). Towards optimal error distributions in adaptive finite element electromagnetic analysis for microelectronic interconnection structures. IEEE Transactions on Magnetics, 38(2): 401-404.

[10] S. McFee and D. Giannacopoulos. (2002). The implications of second-order functional derivative convergence for adaptive finite element electromagnetics. IEEE Transactions on Magnetics, 38(2): 457-460.

[9] D. Giannacopoulos and S. McFee. (2001). Optimal discretization based adaptive finite element analysis for electromagnetics with vector tetrahedra. IEEE Transactions on Magnetics, 37(5): 3503-3506.

[8] S. McFee and D. Giannacopoulos. (2001). Optimal discretizations in adaptive finite element electromagnetics. International Journal for Numerical Methods in Engineering, 52(9): 939-978.

[7] D. Giannacopoulos and S. McFee. (2000). Adaptive finite element methods for analyzing the electromagnetic performance of microelectronic system interconnections. TRN Recent Research Developments in Magnetics, 1(2000): 83-114.

[6] S. McFee and D. Giannacopoulos. (1999). The implications of second-order functional derivatives on error estimation in adaptive finite element analysis for electromagnetics. IEEE Transactions on Magnetics, 35(3): 1330-1333.

[5] D. Giannacopoulos and S. McFee. (1999). Functional derivatives and optimal discretization based refinement criteria for adaptive finite element analysis with scalar tetrahedra. IEEE Transactions on Magnetics, 35(3): 1326-1329.

[4] S. McFee and D. Giannacopoulos. (1998). The implications of parallel processing on h-p adaptive finite element analysis for electromagnetics. IEEE Transactions on Magnetics, 34(5): 3284-3287.

[3] D. Giannacopoulos and S. McFee. (1997). An experimental study of superconvergence phenomena in finite element magnetics. IEEE Transactions on Magnetics, 33(5): 4137-4139.

[2] S. McFee and D. Giannacopoulos. (1996). Optimal discretization based refinement criteria for finite element adaption. IEEE Transactions on Magnetics, 32(3): 1357-1360.

[1] D. Giannacopoulos and S. McFee. (1994). Towards optimal h-p adaption near singularities in finite element electromagnetics. IEEE Transactions on Magnetics, 30(5): 3523-3526.

[75] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2016). Efficient transient full-wave analysis of high-speed interconnects in multilayer PCBs. 2016 IEEE 25th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), San Diego, CA, pp. 179-182. DOI: 10.1109/EPEPS.2016.7835445.

[74] F. Afshar, A. Akbarzadeh-Sharbaf, D. D. Giannacopoulos and S. McFee. (2016). Wideband finite-difference time-domain modeling of graphene via recursive fast fourier transform. 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, pp. 1-1. DOI: 10.1109/CEFC.2016.7816015.

[73] D. Fernández, A. Akbarzadeh-Sharbaf, W. J. Gross and D. D. Giannacopoulos. (2016). Solving finite-element time-domain problems with GaBP. 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp. 1-1. DOI: 10.1109/CEFC.2016.7816127.

[72] Z. Hosseinidoust, D. Giannacopoulos and W. J. Gross. (2016). GPU optimization and implementation of Gaussian belief propagation algorithm," 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp. 1-5. DOI: 10.1109/CEFC.2016.7816128.

[71] D. S. Abraham and D. D. Giannacopoulos (2016). A parallel implementation of the correction function method for poisson's equation with immersed surface charges. 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, FL, 2016, pp. 1-1. DOI: 10.1109/CEFC.2016.7816341.

[70] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2015). Second-Order Uniaxial Perfectly Matched Layer for Finite-Element Time-Domain Methods. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. PD3:12 1-2.

[69] D. Q. Ren, Z. Wei and D. D. Giannacopoulos. (2015). A MapReduce and MPI Programming Model for Distributed Large Scale 3D Mesh Processing. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. PB3:7 1-2.

[68] F. Afshar, A. Akbarzadeh-Sharbaf, and D. D. Giannacopoulos. (2015). A Provably Stable and Simple FDTD Formulation for Electromagnetic Modeling of Graphene Sheets. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. OA6:3 1-2.

[67] D. S. Abraham and D. D. Giannacopoulos (2015). Dispersive Möbius Transform Finite Element Time Domain Method on Graphics Processing Units. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. PB5:16 1-2.

[66] Y. El-Kurdi, D. Fernández, W. J. Gross and D. Giannacopoulos. (2015). Acceleration of the Finite Element Gaussian Belief Propagation Solver Using Minimum Residual Techniques. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. PD3:13 1-2.

[65] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2015). Uniaxial PML in Spherical and Cylindrical Coordinates for Finite-Element Time-Domain Formulations. 20th International Conference on the Computation of Electromagnetic Fields (Compumag 2015), Montreal, Canada, pp. PB5:15 1-2.

[64] A. Akbarzadeh-Sharbaf and D. D. Giannacopoulos. (2014). A unified implementation of the perfectly matched layer in the finite-element time-domain method. 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 719-722, Palm Beach, Aruba. (NSERC)

(Invited paper.)

[63] A. Akbarzadeh Sharbaf and D. D. Giannacopoulos. (2014). Novel Hybrid FETD-FDTD Formulations for Dispersive Media. 2014 16th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), p. 233, Annecy, France.

[62] F. AbuTalib, D. Giannacopoulos and A. Abran. (2014). Designing a Standard-Based Measurement Method for the Safety Requirements of Medical Device Software. 2014 16th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), p. 888, Annecy, France.

[61] D. Q. Ren, Z. Wei and D. Giannacopoulos. (2014). Distributed Large Scale Mesh Simplification with MapReduce and MPI in 3-D Finite Element Electromagnetics with Tetrahedra. 2014 16th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), p. 797, Annecy, France.

[60] F. A. Talib, D. Giannacopoulos and A. Abran. (2013). Designing a measurement method for the portability non-functional requirement. 2013 Joint Conference of the 23rd Software Measurement and the 2013 International Conference on Software Process and Product Measurement, pp. 38-43, Ankara, Turkey. (NSERC)

[59] A. Akbarzadeh-Sharbaf and D. Giannacopoulos. (2013). Convolution-free modeling of dispersive media in the time-domain finite-element solution of the vector wave equation. Proceedings of the 19th Conference on the Computation of Electromagnetic Fields, oc1-2 (2 pages), Budapest, Hungary. (NSERC)

[58] Y. El-Kurdi, W. J. Gross and D. Giannacopoulos. (2013). Parallel Multigrid Acceleration for the Finite Element Gaussian Belief Propagation Algorithm. Proceedings of the 19th Conference on the Computation of Electromagnetic Fields, pb5-5 (2 pages), Budapest, Hungary. (NSERC)

[57] S. McFee and D. Giannacopoulos. (2013). Compatible h-p adaptive refinement strategies for finite element electromagnetic analysis in high performance parallel computing environments. Proceedings of the 19th Conference on the Computation of Electromagnetic Fields, pc2-10 (2 pages), Budapest, Hungary. (NSERC)

[56] M. Mehri Dehnavi*, Y. El-Kurdi, J. Demmel and D. Giannacopoulos. (2012). Communication-Avoiding Krylov Techniques on GPUs. 2012 15th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), p. 249, Oita, Japan.

[55] Y. El-Kurdi, W. J. Gross and D. Giannacopoulos. (2012). Parallel Solution of the Finite Element Method Using Guassian Belief Propagation. 2012 15th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), p. 141, Oita, Japan.

[54] Y. El-Kurdi, D. Giannacopoulos and W. J. Gross. (2012). Relaxed Guassian Belief Propagation. 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2002 - 2006, Cambridge, MA, USA.

[53] F. AbuTalib, D. Giannacopoulos and A. Abran. (2012). Applying the cosmic ISO 19761 measurement method on an MRI mesh generation medical application. 2012 11th International Conference Information Science, Signal Processing and their Applications (ISSPA), pp. 894-899, Montreal, Qubec, Canada.

[52] D. M. Fernández, M. Mehri Dehnavi, W. J. Gross, D. Giannacopoulos. (2011). Alternate parallel processing approach for FEM. Proceedings of the Eighteeeenth Conference on the Computation of Electromagnetic Fields, p.1, Sydney, Australia.

[51] M. Mehri Dehnavi, D. Fernández, J. Gaudiot and D. Giannacopoulos. (2011). Parallel Sparse Approximate Inverse Preconditioning on Graphic Processing Units. Proceedings of the Eighteeeenth Conference on the Computation of Electromagnetic Fields, p.1, Sydney, Australia.

[50] Y. El-Kurdi, W. J. Gross and D. Giannacopoulos. (2011). Efficient implementation of Gaussian Belief Propagation solver for large sparse diagonally dominant linear systems. Proceedings of the Eighteeeenth Conference on the Computation of Electromagnetic Fields, p.1, Sydney, Australia.

[49] D. Q. Ren, E. Bracken, S. Polstyanko, N. Lambert, R. Suda and D. D. Giannacopoulos. (2011). Power aware parallel 3-D finite element mesh refinement performance modeling and analysis with CUDA/MPI on GPU and multi-core architecture. Proceedings of the Eighteeeenth Conference on the Computation of Electromagnetic Fields, p.1, Sydney, Australia.

[48] Da Qi Ren, Dennis D. Giannacopoulos and Reiji Suda. (2010). Power performance analysis of 3-D finite element mesh refinement with tetrahedra by CUDA/MPI on multi-core and GPU architecture.Proceedings of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, p. 1, Chicago, IL, USA.

[47] M. Mehri Dehnavi, D. Fernández and D. Giannacopoulos. (2010). Enhancing the performance of conjugate gradient solvers on graphic processing units. Proceedings of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, p. 1, Chicago, IL, USA.

[46] D. Fernández, D. Giannacopoulos and W. J. Gross. (2010). Alternate approach to FEM for parallel processing. The 10th International Workshop on Finite Elements for Microwave Engineering, p. 52, Meredith, NH, USA.

[45] M. M. Dehnavi, D. M. Fernández and D. Giannacopoulos. (2009). Finite element sparse matrix vector multiplication on graphic processing units. Proceedings of the Seventeenth Conference on the Computation of Electromagnetic Fields, pp.1082-1083, Florianópolis, Brazil.

[44] D. M. Fernández, D. Giannacopoulos and W. J. Gross. (2009). Multicore acceleration of CG algorithms using blocked-pipeline-matching techniques. Proc. of the Seventeenth Conference on the Computation of Electromagnetic Fields, pp.827-828, Florianópolis, Brazil.

[43] F. Abu-Talib and D. Giannacopoulos. (2009). A methodology for applying three-dimensional constrained Delaunay tetrahedralization algorithms on MRI medical images. Proc. of the 17th Conf. on the Comp. of Electromagnetic Fields, pp.1018-1019, Florianópolis, Brazil.

[42] D. M. Fernández, D. Giannacopoulos and W. J. Gross. (2008). Efficient multicore sparse matrix-vector multiplication for finite element electromagnetics. Proceedings of the 13th Biennial IEEE Conference on Electromagnetic Field Computation, p. 469, Athens, Greece.

[41] M. M. Dehnavi and D. Giannacopoulos. (2008). Enhancing the performance of electromagnetic applications on clustered architectures. Proceedings of the 13th Biennial IEEE Conference on Electromagnetic Field Computation, p. 53, Athens, Greece.

[40] Da Qi Ren, D. D. Giannacopoulos and R. Suda. (2008). An optimized dynamic load balancing method for parallel 3-D mesh refinement for finite element electromagnetics with tetrahedra. Proc. of the 2008 IEEE Int. Conf. on Cluster Computing, pp. 430-436, Tsukuba, Japan.

[39] D. Q Ren, S. McFee and D. Giannacopoulos. (2007). A new strategy for reducing communication latency in parallel 3-D finite element tetrahedral mesh refinement. Record of the 16th Conference on the Computation of Electromagnetic Fields, pp. 701-702, Aachen, Germany.

[38] D. Giannacopoulos, D. Q. Ren, C. Park, B. Mirican and S. McFee. (2007). A methodology for performance modeling, simulation and validation of parallel 3-D finite element mesh refinement with tetrahedra. Record of the 16th Conference on the Computation of Electromagnetic Fields, pp. 93-94, Aachen, Germany.

[37] S. McFee and D. Giannacopoulos. (2007). Practical h-p adaptive formulations for finite element electromagnetics in large-scale parallel computing environments. Record of the 16th Conference on the Computation of Electromagnetic Fields, pp. 1087-1088, Aachen, Germany.

[36] Y. El Kurdi, W. J. Gross and D. Giannacopoulos. (2006). Hardware acceleration for finite element electromagnetics: efficient sparse matrix floating-point computations with field programmable gate arrays. Proc. 12th Biennial IEEE Conf. Electromagn. Field Comp., p. 397, Miami, USA.

[35] Y. El Kurdi, D. Giannacopoulos and W. J. Gross. (2006). Sparse matrix-vector multiplication for finite element method matrices on FPGAs. Proceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp.293-294, Napa, USA.

[34] S. McFee, D. Giannacopoulos and B. Mirican. (2006). Strategies for h-p adaptive finite element analysis for electromagnetics in large-scale parallel computing environments: theory and practice. Proc. 12thBiennial IEEE Conf. on Electromagnetic Field Comp., p. 350, Miami, USA.

[33] M. Dorica and D. Giannacopoulos. (2006). Evolution of wire antennas in three dimensions using a novel growth process. Proceedings of the 12th Biennial IEEE Conference on Electromagnetic Field Computation, p. 297, Miami, USA.

[32] M. Dorica and D. Giannacopoulos. (2006). Evolution of two-dimensional electromagnetic devices using a novel genome structure. Proceedings of the 12th Biennial IEEE Conference on Electromagnetic Field Computation, p. 296, Miami, USA.

[31] Da Qi Ren, T. Park, B. Mirican and D. Giannacopoulos. (2006). Parallel hierarchical tetrahedral-octahedral subdivision mesh refinement: performance modeling, simulation and validation. Proc. of the 12th Biennial IEEE Conf. on Electromagnetic Field Comp., p. 227, Miami, USA.

[30] D. Q. Ren and D. Giannacopoulos. (2006). Efficient Pipelined communication design for parallel mesh refinement in 3-D finite element electromagnetics with tetrahedra. Proceedings of the 12th Biennial IEEE Conference on Electromagnetic Field Computation, p. 225, Miami, USA.

[29] M. Popovic and D. Giannacopoulos. (2006). A CAD tool enhanced framework for teaching electromagnetics topics: a recipe for classroom success. Proceedings of the 12th Biennial IEEE Conference on Electromagnetic Field Computation, p. 217, Miami, USA, Miami, USA.

[28] M. Popovic and D. Giannacopoulos. (2006). Introducing student projects in introductory electromagnetics: what have we learned? Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, pp. 1261-1264, Albuquerque, USA.

[27] D. Giannacopoulos, H. K. Fung and B. Mirican. (2005). Efficient load balancing for parallel adaptive finite element electromagnetics with vector tetrahedra. Record of the 15th Conference on the Computation of Electromagnetic Fields, pp. I-16 – I-17, Shenyang, China.

[26] D. Giannacopoulos and D. Q. Ren. (2005). Analysis and design of parallel 3-D mesh refinement dynamic load balancing algorithms for finite element electromagnetics with tetrahedra. Rec. of the 15thConf. on the Comp. of Electromag. Fields, pp. I-118 – I-119, Shenyang, China.

[25] D. Q. Ren and D. Giannacopoulos. (2005). Parallel mesh refinement for 3-D finite element electromagnetics with tetrahedra: strategies for optimizing system communication. Record of the 15thConf. on the Comp. of Electromag. Fields, pp. I-120 – I-121, Shenyang, China.

[24] M. Dorica and D. Giannacopoulos. (2005). Response surface space mapping for electromagnetic optimization. Rec. 15th Conf. Comp. Electromagn. Fields, pp. II-46–II-47, Shenyang, China.

[23] M. Dorica and D. Giannacopoulos. (2005). Response clustering for electromagnetic modeling and optimization. Rec. 15th Conf. Comp. Electromagn. Fields, pp. II-46–II-47, Shenyang, China.

[22] D. Giannacopoulos and M. Popovic. (2005). A teaching framework for essential topics in Electromagnetics. Proceedings of the 2005 IEEE AP-S International Symposium on Antennas and Propagation, vol. 3B, pp. 117-120, Washington, DC.

[21] D. Q. Ren and D. Giannacopoulos. (2004). A preliminary approach to simulate parallel mesh refinement with Petri nets for 3-D finite element electromagnetics. Proc. 10th Int. Symp. Antenna Tech. and Applied Electromagn. and URSI Conf., pp. 127-130, Ottawa, ON.

[20] M. Popovic and D. Giannacopoulos. (2004). Assessment-based use of CAD tools in electromagnetic fields courses. Proceedings of the Eleventh Biennial IEEE Conference on Electromagnetic Field Computation, p. 127, Seoul, South Korea.

[19] M. Dorica and D. Giannacopoulos. (2004). Impact of Mesh Quality Improvement Systems on Finite Element Accuracy. Proceedings of the Eleventh Biennial IEEE Conference on Electromagnetic Field Computation, p. 149, Seoul, South Korea.

[18] M. Popovic and D. Giannacopoulos. (2004). Giving life to teaching introductory electromagnetics: a three-year assessment plan. Proceedings of the 2004 IEEE AP-S Int. Symposium on Antennas and Propagation, vol. 3, pp. 3361-3364, Monterey, CA.

[17] D. Giannacopoulos. (2003). Optimal discretization-based load balancing for parallel adaptive finite element electromagnetic analysis. Record of the 14th Conf. on the Comp. of Electromagnetic Fields, Paper P42731, pp. I-II, Saratoga Springs, New York, USA.

[16] D. Giannacopoulos. (2003). An experimental study of equivalence phenomena for field discontinuity and optimal discretizations in finite element adaption. Record of 14th Conf. on Comp. of Electromag. Fields, Paper P76807, pp. I-II, Saratoga Springs, New York, USA.

[15] M. Dorica and D. Giannacopoulos. (2003). Towards optimal mesh quality improvements for adaptive finite element electromagnetics with tetrahedra. Record of 14th Conf. on Comp. of Electromag. Fields, Paper P62070, pp. I-II, Saratoga Springs, New York, USA.

[14] S. McFee, Q. Wu, M. Dorica and D. Giannacopoulos. (2003). Parallel and distributed processing for h-p adaptive finite element analysis. Record of 14th Conf. on Comp. of Electromag. Fields, Paper P66817, pp. I-II, Saratoga Springs, New York, USA.

[13] S. McFee and D. Giannacopoulos. (2002). Introduction to adaptive finite element analysis for electromagnetic simulations. International Compumag Society Newsletter, 9(2): 6-15.

[12] D. Giannacopoulos. (2002). Field discontinuity refinement criteria and optimal discretizations in adaptive finite element electromagnetic analysis for microelectronic system interconnections. Proc. of the 10thBiennial IEEE Conf. on Electromag. Field Comp., p. 69, Perugia, Italy.

[11] D. Giannacopoulos, Q. Wu and S. McFee. (2002). Parallel processing for h-p adaptive finite element analysis: a comparison of simulated and empirical studies. Proc. of the 10th Biennial IEEE Conference on Electromagnetic Field Computation, p. 82, Perugia, Italy.

[10] D. Giannacopoulos. (2001). Towards optimal error distributions in adaptive finite element electro-magnetic analysis for microelectronic interconnection structures. Record of the 13th Conf. on the Computation of Electromagnetic Fields, vol. I, pp. 218-219, Evian, France.

[9] S. McFee and D. Giannacopoulos. (2001). The implications of second-order functional derivative convergence for adaptive finite element electromagnetics. Record of the 13th Conf. on the Computation of Electromagnetic Fields, vol. IV, pp. 240-241, Evian, France.

[8] S. McFee and D. Giannacopoulos. (2000). The implications of adaptive finite element analysis on electromagnetic simulation for microelectronic system interconnections. IEEE Proc. of the 42nd Midwest Symposium on Circuits. Syst., pp. 325-332, Las Cruces, New Mexico, USA.

[7] D. Giannacopoulos and S. McFee. (2000). Optimal discretization based adaptive finite element analysis with vector tetrahedra. Proceedings of the Ninth Biennial IEEE Conference on Electromagnetic Field Computation, p. 179, Milwaukee, Wisconsin, USA.

[6] S. McFee and D. Giannacopoulos. (1998). The implications of second-order functional derivatives on error estimation in adaptive finite element analysis for electromagnetics. Proc. Eighth Biennial IEEE Conf. on Electromagn Field Comp., pp. 35, Tucson, Arizona.

[5] D. Giannacopoulos and S. McFee. (1998). Functional derivatives and optimal discretization based refinement criteria for adaptive finite element analysis with scalar tetrahedra. Proc. Eighth Biennial IEEE Conf. on Electromagnetic Field Comp., pp. 116, Tucson, Arizona.

[4] S. McFee and D. Giannacopoulos. (1997). The implications of parallel processing on h-p adaptive finite element analysis for electromagnetics. Proc. of the 11th Conference on the Computation of Electromagnetic Fields, pp. 281-282, Rio de Janeiro, Brazil.

[3] D. Giannacopoulos and S. McFee. (1997). An experimental study of superconvergence phenomena in finite element magnetics. Digest of the IEEE International Magnetics Conference (Intermag’97), pp. EP08 (1) – EP08 (2), New Orleans, Louisiana.

[2] S. McFee and D. Giannacopoulos. (1995). Optimal discretization based refinement criteria for finite element adaption. Record of the 10th Conference on the Computation of Electromagnetic Fields, pp. 224-225, Berlin, Germany.

[1] D. Giannacopoulos and S. McFee. (1993). Towards optimal h-p adaption near singularities in finite element electromagnetics. Record of the 9th Conference on the Computation of Electromagnetic Fields, pp. 570-571, Miami, Florida, USA.